Assessment of rodent-borne zoonotic disease risk in rural Uganda

Johanna Salzer, Amanda Jo Williams, Sandra Ockers

Team Members
Johanna Salzer DVM, GDBBS / PBEE
Amanda Jo Williams, GDBBS / PBEE
Sandy Ockers, SPH / PA-MPH Program

Project Mentors
Dr. Thomas Gillespie, Emory, Enviro Studies & EOH
Dr. Innocent Rwego, Makerere University, Uganda

Project Partners
Dr. Darin Carroll, Poxvirus Group, CDC
Dr. Gregory Dasch, Rickettsial Diseases, CDC
Dr. Lihua Xiao, Parasitic Diseases, CDC

Populations/Communities Served
Communities around Kibale National Park in the Kabarole District in western Uganda

Populations/Communities Served
Communities around Kibale National Park in the Kabarole District in western Uganda

Project Goals
1. Assess rodent diversity across gradient of anthropogenic disturbance
2. Identify and characterize poxviruses, rickettsial agents, and protozoans circulating in wild rodents in western Uganda
3. Identify risk factors associated with disease prevalence and potential emergence in western Uganda

Hypotheses/ Expected Outcomes
1. Rodent diversity will decrease as habitat disturbance increases.
2. Wild rodents in and around Kibale National Park are infected with zoonotic pathogens.
3. Prevalence of zoonotic pathogens in wild African rodents is associated with anthropogenic disturbance. Loss of biodiversity will strongly correlate with pathogen prevalence.

Progress to Date
• Field work complete
• Giardia / Cryptosporidium
 • Immunofluorescent antibody assay to identify rodents with infections (ongoing)
• Poxvirus
 • ELISA assay for presence of antibodies to past Orthopoxvirus infection (ongoing)
 • PCR assay to identify presence of viral particles from current infections (ongoing)
• Rickettsia
 • Ectoparasites from domestic animals identified
 • Fleas from domestic animals assayed for R. felis and R. typhi (all negative)

Next Steps
• Giardia / Cryptosporidium
 • Molecular characterization
• Poxvirus
 • Western blot analysis
 • Viral neutralizations
• Rickettsia
 • Assay fleas from domestic animals for Bartonella, Coxiella, and additional Rickettsia
 • Identification of rodent ectoparasite samples

Acknowledgements: Many thanks to our field assistants, Charles Akora and Isaiah Mwesige. We also thank the Uganda Wildlife Authority and Makerere University Biological Field Station. Additional thanks to Ryan Lash, Trisha Canfield, Stefanie Lang, Eunice Lee, members of Gillespie Lab, Poxvirus Group, and Rickettsial Diseases Group.